1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类。 因为要找到最近的k个实例,所以计算输入实例与 ...
1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类。 因为要找到最近的k个实例,所以计算输入实例与 ...
给定训练集$\{x^{(1)},...,x^{(m)}\}$,想把这些样本分成不同的子集,即聚类,$x^{(i)}\in\mathbb{R^{n}}$,但是这是个无标签数据集,也就是说我们再聚类的时候 ...
1.KNN原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对 ...
1.引言 假如你经营着一家网店,里面卖各种商品(Items),有很多用户在你的店里面买过东西,并对买过的Items进行了评分,我们称之为历史信息,现在为了提高销售量,必须主动向用户推销产品,所以关键 ...
1. 关于ID3和C4.5的原理介绍这里不赘述,网上到处都是,可以下载讲义c9641_c001.pdf或者参考李航的《统计学习方法》. 2. 数据与数据处理 本文采用下面的训练数据: ...
1.引言 许多网站都喜欢让用户点击“喜欢/不喜欢”,“顶/反对”,也正是这种很简单的信息也可以利用起来对用户进行推荐!这里介绍一种基于网络结构的推荐系统! 由于推荐系统深深植根于互联网,用户与用户 ...
1.引言 矩阵分解(Matrix Factorization, MF)是传统推荐系统最为经典的算法,思想来源于数学中的奇异值分解(SVD), 但是与SVD 还是有些不同,形式就可以看出SVD将原始的 ...
目录 大数定律 中心极限定理 置信区间 峰度、偏度检验 箱线图 单分布卡方拟合检验 大数定律 返回目录 弱大数定律(辛钦大数定律): ...